Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks' medium
نویسندگان
چکیده
For the hyperbolic conservation laws with discontinuous flux function there may exist several consistent notions of entropy solutions; the difference between them lies in the choice of the coupling across the flux discontinuity interface. In the context of Buckley-Leverett equations, each notion of solution is uniquely determined by the choice of a “connection”, which is the unique stationary solution that takes the form of an undercompressive shock at the interface. To select the appropriate connection, following Kaasschieter (Comput. Geosci., 3(1):23–48, 1999) we use the parabolic model with small parameter that accounts for capillary effects. While it has been recognized in Cancès (Netw. Heterog. Media, 5(3):635–647, 2010) that the “optimal” connection and the “barrier” connection may appear at the vanishing capillarity limit, we show that the intermediate connections can be relevant and the right notion of solution depends on the physical configuration. In particular, we stress the fact that the “optimal” entropy condition is not always the appropriate one (contrarily to the erroneous interpretation of Kaasschieter’s results which is sometimes encountered in the literature). We give a simple procedure that permits to determine the appropriate connection in terms of the flux profiles and capillary pressure profiles present in the model. This information is used to construct a finite volume numerical method for the Buckley-Leverett equation with interface coupling that retains information from the vanishing capillarity model. We support the theoretical result with numerical examples that illustrate the high efficiency of the algorithm.
منابع مشابه
Approximating the vanishing capillarity limit of two-phase flow in multi-dimensional heterogeneous porous medium
Neglecting capillary pressure effects in two-phase flow models for porous media may lead to non-physical solutions: indeed, the physical solution is obtained as limit of the parabolic model with small but non-zero capillarity. In this paper, we propose and compare several numerical strategies designed specifically for approximating physically relevant solutions of the hyperbolic model with negl...
متن کاملInvestigating the Effect of Heterogeneity on Buckley-Leverett Flow Model
The performance of water flooding can be investigated by using either detail numerical modeling or simulation, or simply through the analytical Buckley-Leverett (BL) model. The Buckley-Leverett analytical technique can be applied to one-dimensional homogeneous systems. In this paper, the impact of heterogeneity on water flooding performance and fractional flow curve is investigated. First, a ba...
متن کاملA New Class of Entropy Solutions of the Buckley-Leverett Equation
We discuss an extension of the Buckley-Leverett (BL) equation describing twophase flow in porous media. This extension includes a third order mixed derivatives term and models the dynamic effects in the pressure difference between the two phases. We derive existence conditions for traveling wave solutions of the extended model. This leads to admissible shocks for the original BL equation, which...
متن کاملCDF Solutions of Buckley-Leverett Equation with Uncertain Parameters
The Buckley–Leverett (nonlinear advection) equation is often used to describe twophase flow in porous media. We develop a new probabilistic method to quantify parametric uncertainty in the Buckley–Leverett model. Our approach is based on the concept of a fine-grained cumulative density function (CDF) and provides a full statistical description of the system states. Hence, it enables one to obta...
متن کاملOn the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types
We consider a simplified model for two-phase flows in one-dimensional heterogeneous porous media made of two different rocks. We focus on the effects induced by the discontinuity of the capillarity field at interface. We first consider a model with capillarity forces within the rocks, stating an existence/uniqueness result. Then we look for the asymptotic problem for vanishing capillarity withi...
متن کامل